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Abstract

The embedded machine is a virtual machine in the spirit of the Java virtual machine with
specific extensions for embedded real-time computing on distributed platforms. The embedded
machine provides an abstract platform for generating distributed code from high-level embedded
programming languages. The instruction set of the embedded machine has a formal synchronous
(zero-delay) semantics which provides synchronous control of scheduled computation and com-
munication with respect to the progress of real-time and the occurrences of events. The serializa-
tion of concurrent scheduled computation and communication is defined non-deterministically
which makes the embedded machine compatible with any scheduling algorithm. A program of
the embedded machine determines when to schedule task invocations and message delivery but
not how. A scheduling algorithm is thus a parameter of a program of the embedded machine.

1 Introduction

The embedded machine or E machine for short is a virtual machine in the spirit of the Java virtual
machine (JVM) [LY99] with specific extensions for embedded real-time computing on distributed
platforms. The E machine provides an abstract platform for generating distributed code from
high-level embedded programming languages such as synchronous reactive languages [Hal93], e.g.,
Lustre [HCRP91] or Esterel [Ber00], or time-triggered languages like Giotto [HHK00]. A virtual
machine not only supports the generation of portable code but also helps to identify the key services
of target platforms which support the execution of a given class of programming languages. The
main objective of this paper is to define a minimal set of instructions which are essential for
distributed code generation for event- and time-triggered programming languages with explicit
real-time constructs.

The instruction set of the E machine is called E code. Unlike Java bytecode, E code allows to
specify the computational behavior of a system relative to the progress of time and the occurrences
of events. The E machine controls the execution of tasks and the delivery of messages. In fact,
the E machine can be seen as a meta machine controlling the execution of other non-embedded
machines which execute tasks and transmit messages. A task in this model is single-threaded code
without any synchronization points but with known worst-case execution time (WCET) [TFW00].
The communication to and from a task is not performed by the task but by the E machine prior
to task execution and after task completion. Similarly, we model messages as tasks with known
worst-case latency (WCL) where, however, the emphasis is not on the code of a message but on its
input and output interface which effectively determines sender and receiver.

∗This work has been supported by Boeing on DARPA SEC grant F33615-99-C-1500.
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The E machine abstracts from the services of a real-time operating system. In the semantics of
the E machine we distinguish synchronous and scheduled computation. Synchronous computation
is performed logically with zero time delay whereas scheduled computation takes time. In an
implementation of the E machine, synchronous computation may be performed in the kernel context
whereas scheduled computation may be done in the user context. From the perspective of scheduled
computation the activity of the kernel, i.e., of the E machine, is instantaneous whereas the kernel
sees user activity as scheduled computation which takes time. In an implementation, special care
has to be taken to enforce this semantics, e.g., any portion of the memory accessed by a task should
not be accessible to any other tasks.

Synchronous computation in the E machine is sequential whereas scheduled computation is
concurrent. It is thus necessary to serialize scheduled computation which is usually done in online
systems using priorities. A scheduling algorithm computes the required priority assignment. The
E machine uses the synchronous semantics to specify the scheduled reaction of a system to the
progress of time and the occurrences of events. A scheduled reaction is the result of scheduled
computation or communication. Serialization of scheduled computational activity in the E ma-
chine is defined non-deterministically which makes the E machine compatible with any scheduling
algorithm. A program of the E machine determines when to schedule task invocations and message
delivery but not how. A scheduling algorithm is thus a parameter of E code.

The E machine has an environment and an output interface as well as an internal memory.
Interfaces and memory are sets of ports. A port is a variable with finite type and a unique identifier.
The value of a port in the environment interface is determined by the physical environment of the
E machine. The port is read-only for the machine. On the other hand, the value of a port in the
output interface is set by the E machine and may affect the physical environment. The port is
read-only for the environment. The E machine has read and write access to its internal memory
which is not observable by the environment. We distinguish signal and value ports. A signal port
is an integer port whose valuations are non-decreasing with respect to the progress of time. A
signal counter is a valuation of a signal port. We require that signal counters are increased at
most by one at any instance. We speak of the occurrence of a signal whenever a signal counter is
increased by one. A value port is an uninterpreted port with arbitrary type. Thus value ports in
the environment interface may model state whereas signal ports may model change of state. If a
signal port in the environment interface is driven by a real-time clock its signal counter corresponds
to absolute time.

A configuration of the E machine contains a schedule and valuations for all ports of the ma-
chine. A schedule is a list of triggers which determines when to invoke E code of the machine. A
trigger (s,m, l) consists of a signal port s, a signal counter m, and an E code program address l.
A trigger is active when the signal counter of s reaches m. Then the E machine executes the
E code at l. If s is driven by a real-time clock, m refers to the absolute time of this clock. The key
instruction of the E machine is the embedded jump. It inserts new triggers into the schedule of the
machine. An embedded jump has as arguments a signal port s, a signal counter n, and a program
address l. The signal counter n determines relative to the current signal counter k of s how long
to wait before invoking the E code at l. It will add a trigger (s, k + n, l) to the schedule. Multiple
active triggers are executed in the order of the execution of the according embedded jumps. If s
is driven by a real-time clock, n refers to relative time. E code uses relative time which will be
translated to absolute time during the execution of the code.

There are two call instructions to invoke tasks and to transmit messages, respectively. In order
to execute tasks, the synchronous call instruction invokes a task and blocks until the execution of
the task is completed. The scheduled call instruction invokes a task and then proceeds immediately
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to the next instruction. We assume that some scheduling algorithm assigns a priority to this
task. The result of the scheduled invocation will be available some time later. We model message
delivery in a similar way. Note that emitting signals by an E machine is only possible through
scheduled invocations. A signal counter of a given signal port may be increased upon completion
of scheduled computation but not synchronous computation. Note also that the E machine only
checks the presence of signals but the absence as opposed to the synchronous reactive semantics,
e.g., of Esterel.

The E machine is related to automata-based approaches like the object code (OC) [PS98] for
generating code from Lustre and Esterel. An OC program is an automaton whose state transitions
determine the reaction of a system with respect to the set of all signals in the system without
keeping track of signal counters. The E machine, on other hand, may schedule reactions with
respect to a single signal and its signal counter. Conceptually, the E machine implicitly partitions
the states of an OC program into several states with possibly less transitions. In particular, in the
context of real-time clocks, the E machine allows to code specific time-triggered reactions.

For distributed code generation we define the distributed E machine to be the parallel com-
position of E machines. The semantics of the E machine readily carries over to the distributed
case. Communication between E machines is modeled by identifying ports of the output interfaces.
Common output value ports of multiple E machines model frames send on the networks between
the machines. A frame is the largest non-preemptive sequence of bits which can be send on a
network. Writing to a common output value port corresponds to sending a frame.

In the following section we introduce preliminary definitions which will be used throughout the
paper. In Section 3 we define the E machine and E machine configurations. Section 4 describes
abstract and concrete syntax as well as the semantics of each instruction of the E machine. In the
second part of Section 4 we formally define the semantics of the E machine. In Section 5 we define
the distributed E machine which is a parallel composition of multiple E machines. We conclude
the paper in Section 6 with a discussion of future work.

2 Preliminaries

In this section we define the notions of ports, programs, and schedules which will be used throughout
the paper.

2.1 Ports

A port is a variable with finite type and a unique location in some shared memory. Note that we
use shared memory as a logical concept not an implementation.

Definition 2.1 (Port)
A port is a tuple (a,T) consisting of (1) an address a and (2) a type T. An address is a non-
negative integer. A type is a finite set of values. We require that any two distinct ports have
different addresses.

Memory is a finite set of ports. We may call memory also interface depending on its usage.

Definition 2.2 (Memory)
Memory is a finite set mem of ports. We define a function addresses which returns the set of
addresses of all ports in mem by addresses(mem) = {a|(a,T) ∈ mem}. An address a is called
valid in mem if a ∈ addresses(mem). We use ∗(a,mem) to denote the port (a,T) ∈ mem for a
valid address a in mem.

3



We define valuations as relations between port addresses and values for notational convenience
although valuations are actually functions assigning unique values to port addresses.

Definition 2.3 (Valuation)
Let (a,T) be a port p. A valuation for p is a tuple (a, v) with v ∈ T. Let mem be some memory. A
valuation for mem is a set µ of valuations for all ports in mem such that for all (a, v1) ∈ µ and for
all (b, v2) ∈ µ with v1 �= v2 we have a �= b. A valuation induces a function from addresses to values.
If (a, v) ∈ µ then µ(a) maps a to the value v. We define a function addresses which returns the
set of addresses of all ports in a valuation µ by addresses(µ) = {a|(a, v) ∈ µ}.

We define an update function for valuations in order to replace subsets of valuations by other
valuations.

Definition 2.4 (Update)
Let µ be a valuation for some memory mem and let memr be a subset of mem. Let A be the
set addresses(memr) of addresses of memr. We define the restriction µ|A of µ to be the valu-
ation {(a, v)|(a, v) ∈ µ, a ∈ A}. The extension µ|memr to restrictions on memories is given by
µaddresses(memr). Let ν be a valuation for memr. We define the function update which replaces the
valuations in µ for memr by valuations in ν by update(µ, ν) = (µ \ (µ|addresses(ν))) ∪ ν. Note that
update(µ, ν) is a valuation whenever µ and ν are valuations.

The following function allows to increase the signal counters of signal ports.

Definition 2.5 (Increase)
Let µ be a valuation for some memory mem and let mems be a subset of all signal ports in mem.
Let S be the set addresses(mems) of addresses of mems. The function increase, given by
increase(µ, S) = update(µ, {(a, v + 1)|(a, v) ∈ µ|S}), increases the signal counters for mems in µ
by one.

2.2 Programs

We restrict the number of maximum number of arguments of a machine instruction to three for
notational convenience.

Definition 2.6 (Instruction)
An instruction is a tuple (ic, i1, i2, i3) consisting of (1) an instruction code ic, (2) an argument i1,
(3) an argument i2, and (4) an argument i3. An instruction code is a three-letter string. We define
a mapping of instruction codes to integer opcodes in the appendix in Section 7. An argument
is a non-negative integer. We use str(i1)(i2)(i3) to denote an instruction (str, i1, i2, i3). If the
instruction only uses one or two arguments we write str(i1) or str(i1)(i2), respectively. If the
instruction does not require an argument at all we write str.

A program is a finite list of instructions assigning a unique program address to each instruction.
The program address of the first instruction may be any non-negative integer which we call the
offset of the program.

Definition 2.7 (Program)
A program eco is a finite list 〈inso, . . . , insn〉 of instructions insi for o ≤ i ≤ n. We call o the
offset and n the end of eco. We use ∗(i, eco) to denote the instruction insi. The index i is called a
program address. A program address a is called valid in eco if there is an instruction insa in eco.
A program counter PC is a non-negative integer.

4



The control state of a program associates non-negative integers with program addresses in the
program. We use the control state for dereferencing the arguments of indirect jump instructions.

Definition 2.8 (Control State)
Let eco be a program and let l be a valid program address in eco. Let i be a non-negative integer.
An indirect jump address for i in eco is a tuple (i, l). The control state of eco is a set ρ of indirect
jump addresses in eco. Note that we will apply the update function for valuations to update the
control state.

A stack is a list of non-negative integers. The E machine maintains a single LIFO stack.

Definition 2.9 (Stack)
A list lst is a finite sequence 〈l0, . . . , ln〉 of elements li for 0 ≤ i ≤ n. The empty list is denoted
by 〈〉. We use ◦ to concatenate lists. We denote membership by l ∈ lst. We extend set exclusion to
lists in a straight-forward way. For a given subset S of all elements of lst, the list lst\S denotes the
list lst without the elements of S. A stack stk is a list 〈int0, . . . , intn〉 of non-negative integers inti
for 0 ≤ i ≤ n.

2.3 Schedules

A trigger associates E code with the state of a signal counter of a signal port. A trigger determines
which E code is to be executed given the value of a signal counter of a signal port. A schedule is a
list of triggers. It is possible that multiple triggers in a schedule are active at the same instance.

Definition 2.10 (Schedule)
Let eco be a program and let l be a valid program address in eco. Let (s,T) be a signal port. Let
n be a non-negative integer. A trigger on s is a tuple (s, n, l). A schedule on some memory mem
of signal ports is a list τ of triggers on the ports in mem.

A scheduled reaction determines when to complete scheduled computation or communication.
A distributed reaction is a set of scheduled reactions. It is possible that multiple scheduled reactions
in a distributed reaction will be completed at the same instance.

Definition 2.11 (Distributed Reaction)
Let (a,Ta) and (b,Tb) be two signal ports. Let S either be the empty set or the singleton set {b}.
Let f be a function defined on a set in of ports and let ν be a valuation of in. Let n be a non-
negative integer. A scheduled reaction on a is a tuple (a, n, f, ν, S). A distributed reaction on some
memory mem of signal ports is a set δ of scheduled reactions on the ports in mem.

A scheduled reaction formalizes the completion of scheduled computation and communication.
We call a set of scheduled reactions a distributed reaction because in an implementation of the
E machine, multiple scheduled reactions at the same instance are only possible on different machines
of a distributed E machine. On a single E machine there can only be a single scheduled reaction at
any instance because there can only be a single task or message being completed at any instance.

3 The Embedded Machine

The E machine is an abstract stack machine which executes E code from a program eco on three
different types of memories. The environment interface of the E machine is a set env of environment
ports whose values are set by the physical environment of the E machine. For the E machine the
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env interface is read-only. The environment interface is partitioned into the signal interface envs

of signal ports in env and the value interface envv of value ports in env, i.e., env is the disjoint
union envs ∪ envv.

The internal memory of the E machine is a set int of internal ports of the E machine. We
assume that the int memory is not observable by the environment or any other E machine. We
partition int into the signal memory ints and value memory intv. A task scheduled by the eco
program may only read from a subset of the int memory and write to a subset of the intv memory.

The output interface of the E machine is a set out of output ports. For the environment the out
interface is read-only. We partition out into the signal memory outs and value memory outv. A
message scheduled by the eco program may either read from a subset of the env and out interface
and write to a subset of the intv memory, or else read from a subset of the int memory and write
to a subset of the outv interface.

We denote the overall E machine memory env ∪ int ∪ out by mem which is partitioned into
signal memory mems and value memory memv, i.e., mem is the disjoint unionmems∪memv where
mems = envs ∪ ints ∪ outs and memv = envv ∪ intv ∪ outv. The E machine computes valuations
for the int memory and out interface from valuations for all ports of the overall memory mem.

Definition 3.1 (Embedded Machine)
An embedded machine (E machine) M is a tuple (eco, env, int, out) which consists of (1) a pro-
gram eco, (2) an interface env, (3) a memory int, and (4) an interface out. We require env∩int = ∅,
env ∩ out = ∅, and int ∩ out = ∅.

The E machine maintains a valuation µ for its memory mem, a schedule τ of its triggers, a
distributed reaction δ of its scheduled reactions, and a control state ρ. The schedule accumulates
the completed and pending embedded jumps. The distributed reaction specifies when scheduled
tasks and messages have finished and will finish. An indirect jump instruction of the E machine uses
ρ to dereference its arguments, which is a non-negative integer, to an absolute program address.

Definition 3.2 (Configuration)
Let M be an embedded machine (eco, env, int, out). A configuration C of M is a tuple (µ, τ, δ, ρ)
which consists of (1) a valuation µ for env∪ int∪out, (2) a schedule τ , (3) a distributed reaction δ,
and (4) a control state ρ of eco.

The instruction set and the formal semantics of the E machine are defined in the next section.

4 Semantics

For the definitions in this section let M be an embedded machine (eco, env, int, out). Let mem
be the overall memory of M . The E machine internally maintains a program counter PC and a
stack stk of non-negative integers. The E machine uses the stk stack to maintain jump addresses,
signal counters, and other miscellaneous values. Configurations of M are denoted by c.

4.1 The E Code Semantics

We call the instruction set of the E machine E code. The function exec defines the semantics of
E code. It computes sets of E machine configurations. We require that E code does not contain in-
finite loops. Note that we do not cover error handling in the definition of the E machine. We begin
with a definition of synchronous E code which consists of all instructions except the instructions
for scheduled computation. In the logical semantics of the E machine, we require that synchronous
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E code is executed instantaneously similar to the logical semantics of synchronous reactive lan-
guages. Note that instructions like push, pop, add, the no operation, the comparison, conditional
and absolute jump instructions are standard machine instructions. These instruction are conve-
nient but not necessary. Other choices are possible. The unique features of the E machine are the
embedded jump instruction in combination with the synchronous and scheduled call instructions
which we will use to control task invocations and message delivery.

Synchronous Computation. The synchronous call instruction com(f) invokes the synchronous
computation of an external function f . We require that f is computable and is defined on a subset
of the internal ports of M . Thus f can neither see nor affect the environment directly.

Definition 4.1 (Synchronous Computation)
Let f be a computable function which maps valuations of its input ports in which are a subset of the
internal ports int to valuations of its output ports which are a subset of the internal value ports intv.
We define the semantics of the instruction com(f). We assume that ∗(PC, eco) = com(f). Then:

exec(PC, stk, (µ, τ, δ, ρ)) = exec(PC + 1, stk, (update(µ, f(µ|in)), τ, δ, ρ))

The push instruction psh pushes its argument onto the stack.

Definition 4.2 (Push)
Let i be a non-negative integer. We define the semantics of the instruction psh(i). We assume that
∗(PC, eco) = psh(i). Then:

exec(PC, stk, c) = exec(PC + 1, 〈i〉 ◦ stk, c)

The pop instruction pop removes the top value from the stack.

Definition 4.3 (Pop)
We define the semantics of the instruction pop. Let i be a non-negative integer. We assume that
∗(PC, eco) = pop. Then:

exec(PC, 〈i〉 ◦ stk, c) = exec(PC + 1, stk, c)

The add instruction add(j) adds j to the top value i of the stack. Note that j may be negative.
add(j) removes i from the stack, adds j to it, and then pushes the result r back onto the stack. r
is equal to i+ j if i+ j ≥ 0, or else r is zero.

Definition 4.4 (Add)
Let i a non-negative integer and let j be an integer. We define the semantics of the instruction
add(j). We assume that ∗(PC, eco) = add(j). Then:

exec(PC, 〈i〉 ◦ stk, c) = exec(PC + 1, 〈i+ j〉 ◦ stk, c)

if i+ j ≥ 0, or otherwise

exec(PC, 〈i〉 ◦ stk, c) = exec(PC + 1, 〈0〉 ◦ stk, c)

The comparison instruction neq(j) pushes a 1 onto the stack whenever the top value i on the
stack is not equal to j. Otherwise, it pushes 0 onto the stack.
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Definition 4.5 (Comparison)
Let i be a non-negative integer. We define the semantics of the instruction neq(j). We assume that
∗(PC, eco) = neq(j). Then:

exec(PC, 〈i〉 ◦ stk, c) = exec(PC + 1, 〈0, i〉 ◦ stk, c)

if i = j, or otherwise

exec(PC, 〈i〉 ◦ stk, c) = exec(PC + 1, 〈1, i〉 ◦ stk, c)

The conditional jump instruction cmp(l) jumps to the program address l whenever the top
value i on the stack is equal to zero. More precisely, cmp(l) reads and removes the top value i from
the stack and then loads the program counter with its argument l if and only if i is equal to zero.

Definition 4.6 (Conditional Jump)
Let i be a non-negative integer. Let l be a valid address of the program eco. We define the semantics
of the instruction cmp(l). We assume that ∗(PC, eco) = cmp(l). Then:

exec(PC, 〈i〉 ◦ stk, c) = exec(l, stk, c)

if i = 0, or otherwise

exec(PC, 〈i〉 ◦ stk, c) = exec(PC + 1, stk, c)

The absolute jump instruction jmp(l) performs a jump to the program address l. It loads the
program counter with l.

Definition 4.7 (Absolute Jump)
Let l be a valid address of the program eco. We define the semantics of the instruction jmp(l). We
assume that ∗(PC, eco) = jmp(l). Then:

exec(PC, stk, c) = exec(l, stk, c)

We define the semantics of the return instruction ret. If the stack of the E machine is not
empty, ret removes the top value from the stack and loads the program counter with the top value.
We assume that this value is a program address which has been pushed onto the stack by a previous
push instruction or an embedded jump instruction. In this case, ret behaves similar to a standard
return instruction at the end of a procedure. If, however, the stack of the E machine is empty, ret
stops the execution of the current program.

Definition 4.8 (Return)
Let l be a valid program address in eco. We define the semantics of the instruction ret. We assume
that ∗(PC, eco) = ret. Then:

exec(PC, 〈〉, c) = {c}

or

exec(PC, 〈l〉 ◦ stk, c) = exec(l, stk, c)

The instruction nop just proceeds to the next instruction.
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psh(0)
While: neq(10)

cmp(End:)
com(f)
add(5)
jmp(While:)

End: pop
ret

Figure 1: An example of synchronous E code.

prd(p)
cmp(Else:)
com(f)

Else: ret

Figure 2: An example of dynamic E code.

Definition 4.9 (No operation)
We define the semantics of the instruction nop. We assume that ∗(PC, eco) = nop. Then:

exec(PC, stk, c) = exec(PC + 1, stk, c)

Consider the basic E code in Figure 1. We use labels of the form label: to denote program
addresses. The program implements a simple while loop. It invokes a function f two times before it
leaves the while loop. We assume that each external function is associated to a unique non-negative
integer. We overload f to denote this integer. Note that the execution of the program is assumed
to happen in zero time.

Dynamic E code. In this paragraph we introduce an instruction to invoke external predicates.
We call E code which contains predicate instructions dynamic E code. The instruction prd(p)
invokes the computation of an external predicate p. We require that p is computable and is defined
on a subset of the internal ports of M .

Definition 4.10 (Predicate)
Let p be a computable function which maps valuations of its input ports in which are a subset of
the internal ports int to 0 or 1. We define the semantics of the instruction prd(p). We assume that
∗(PC, eco) = prd(p). Then:

exec(PC, stk, (µ, τ, δ, ρ)) = exec(PC + 1, 〈p(µ|in)〉 ◦ stk, (µ, τ, δ, ρ))

Consider the dynamic E code in Figure 2. The function f is only executed if the predicate p is
true on the current valuation of the input ports of p.

Explicit control state. We use the control state ρ of the E machine to make the control state
of E code available to computational activity in the future. The indirect jump instruction imp(i)
performs a jump to the absolute program address ρ(i) by dereferencing its argument i using the
control state ρ.
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set(0)(S1:)
prd(p)
cmp(Else:)
set(0)(S0:)

Else: imp(0)
S0: com(f)
S1: ret

Figure 3: An example of E code with explicit control state.

Definition 4.11 (Indirect Jump)
Let i be a non-negative integer where ρ(i) is a valid address in eco and ρ is the control state of the
configuration c. We define the semantics of the instruction imp(i). We assume that ∗(PC, eco) =
imp(i). Then:

exec( , stk, c) = exec(ρ(i), stk, c)

The set instruction set(i)(l) modifies the control state ρ of the E machine. It associates its
argument i with the program address l in ρ.

Definition 4.12 (Set)
Let i be a non-negative integer and let l be a valid address in eco. We define the semantics of the
instruction set(i)(l). We assume that ∗(PC, eco) = set(i)(l). Then:

exec(PC, stk, (µ, τ, δ, ρ)) = exec(PC + 1, stk, (µ, τ, δ, update(ρ, {(i, l)})))

Consider the E code in Figure 3. Similarly as above, the function f is only executed if the
predicate p is true on the current valuation of the input ports of p.

The E code introduced so far is still very limited. We can only express some restricted finite
computational activity. The E machine can even neither see nor affect any state values of the
environment. To connect the E machine to state values of its environment and of its output we
introduce synchronous read and write instructions in the next paragraph.

Synchronous Communication. In order to allow external functions to see and affect state
values of the environment we introduce read and write instructions which have the same semantics
as the synchronous call instruction to invoke external functions but with different restrictions on
their arguments.

Definition 4.13 (Read)
Let f be a computable function which maps valuations of a subset in of the environment and
output ports env ∪ out to valuations of a subset of the internal value ports intv. The semantics of
the instruction red(f) is exactly the same as the semantics of the instruction com(f).

Definition 4.14 (Write)
Let f be a computable function which maps valuations of a subset in of the internal ports int to
valuations of a subset of the output value ports outv. The semantics of the instruction wrt(f) is
exactly the same as the semantics of the instruction com(f).
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psh(0)
While: neq(10)

cmp(End:)
red(fr)
com(f)
wrt(fw)
add(5)
jmp(While:)

End: pop
ret

Figure 4: An example of closed E code.

The read instruction allows the E machine to observe whereas the write instruction allows
to change state values of the environment. E code containing write instructions but no read
instructions is called open E code. We call E code containing read and write instructions closed
E code.

Consider the closed E code in Figure 4. Let fr be a function which reads from an environment
port and updates an internal port pr. Let fw be a function which takes the value from an internal
port pw and writes it to an output port. Let f be a function mapping values from the internal
port pr to values in the internal port pw. The program implements a simple while loop. Anytime
before it invokes f the instruction red(fr) copies the value of some environment port to the internal
port pr. Thus f can see the environment of the E machine. Each time f is finished, the instruction
wrt(fw) copies the result to some output port. Note that since the execution of the program is
assumed to happen in zero time, both invocations of f will see the same value in the environment.

Embedded Jump. In this paragraph we define the semantics of the embedded jump instruc-
tion and the deschedule instruction. We require for the execution of an embedded jump instruc-
tion emp(s)(l) that the stack contains at least one value. s is the address of a signal port and l is
a program address. emp(s)(l) reads the top value n from the stack. If n is equal to zero it pushes
the program address of the next instruction onto the stack and then jumps immediately to the
program address l. In this case the embedded jump corresponds to a procedure call which saves a
return address on the stack.

If n is greater than zero it inserts a trigger (s,m, l) into the schedule τ where m = µ(s)+n and
µ(s) is the current signal counter of s. An embedded jump with n > 0 corresponds to an absolute
jump performed in the future upon the m-th occurrence of a signal in s. Note that a return address
is not saved on the stack.

Definition 4.15 (Embedded Jump)
Let s be the address of a signal port. Let l be a valid address of the program eco. We define
the semantics of the instruction emp(s)(l). Let n be a non-negative integer. We assume that
∗(PC, eco) = emp(s)(l). Then:

exec(PC, 〈0〉 ◦ stk, c) = exec(l, 〈PC + 1, 0〉 ◦ stk, c)

or, if n > 0:

exec(PC, 〈n〉 ◦ stk, (µ, τ, δ, ρ)) = exec(PC + 1, 〈n〉 ◦ stk, (µ, τ ◦ 〈(s, µ(s) + n, l)〉, δ, ρ))
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Invoke f: psh(0)
emp(clk)(Function f:)
pop
ret

Function f: red(fr)
com(f)
wrt(fw)
ret

Figure 5: An example of synchronous E code with a procedure call.

Invoke g: psh(0)
While: neq(10)

cmp(End:)
emp(clk)(Function g:)
add(5)
jmp(While:)

End: pop
ret

Function g: com(g)
ret

Figure 6: An example of synchronous E code with a loop around an embedded jump.

An example of synchronous E code with a procedure call is depicted by Figure 5. clk is the
address of a signal port of the environment interface. We assume that the signal counter of clk
is increased periodically by a 1ms tick of a real-time clock. We first push a zero onto the empty
stack and then perform an embedded jump to Function f:. In this case, the jump behaves like
a procedure call pushing the program address of the following pop instruction onto the stack and
then jumping to Function f:. The following three instructions are similar to the example depicted
by Figure 4. The final return instruction jumps to the program address which has been saved on
the stack by the previous embedded jump. Finally, the zero on the stack is removed from the stack
and the program exits.

An example of synchronous E code with a loop around an embedded jump is depicted by
Figure 6. The first invocation of the embedded jump behaves like a procedure call to Function g:
similar to the example depicted by Figure 5. However, the second invocation sees a five on the
stack. In this case, the embedded jump adds a trigger (clk, k + 5, Function g:) to the schedule of
the E machine where k is the current time in clk. Thus the code at Function g: will be executed
exactly in 5ms. At the current instance, however, the E machine proceeds immediately and finishes
the loop and exits.

Consider the synchronous E code in Figure 7. The program invokes the function f every 20ms
and the function g every 5ms as long as the predicate p returns zero which is checked every 10ms.
As soon as p returns a one the E machine stops. This example has been motivated by the time-
triggered semantics of Giotto [HHK00].

The deschedule instruction complements the embedded jump instruction in the sense that a
trigger which has previously been inserted into the schedule τ by an embedded jump can be removed
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Minor1: psh(0)
emp(clk)(Invoke f:)
emp(clk)(Invoke g:)
add(10)
emp(clk)(Check Minor1:)
pop
ret

Check Minor1: prd(p)
cmp(Minor2:)
ret

Minor2: psh(0)
emp(clk)(Invoke g:)
add(10)
emp(clk)(Check Minor2:)
pop
ret

Check Minor2: prd(p)
cmp(Minor1:)
ret

Figure 7: An example of a Giotto implementation.

by the deschedule instruction. An application of the deschedule instruction is the implementation
of timeouts.

Definition 4.16 (Deschedule)
Let s be the address of a signal port. Let l be a valid address of the program eco. We define
the semantics of the instruction des(s)(l). Let n be a non-negative integer. We assume that
∗(PC, eco) = des(s)(l). Then:

exec(PC, 〈n〉 ◦ stk, (µ, τ, δ, ρ)) = exec(PC + 1, 〈n〉 ◦ stk, (µ, τ \ {(s, µ(s) + n, l)}, δ, ρ))

if n > 0.

Scheduled Computation. Synchronous computation is logically instantaneous computation.
An implementation of the E machine can only approximate this assumption on the semantics.
Scheduled computation, on the other hand, is computation which strictly takes time. We define
the scheduled call instruction cal(se)(f)(si) for scheduled computation of external functions which
complements the synchronous call instruction com(f). We call E code containing instructions for
scheduled computation scheduled E code. We require that f is computable and is defined on a
subset of the internal ports of M . Thus f can neither see nor affect the environment directly.
We assume that the worst-case execution time of f is known and is available to any scheduling
algorithm used by the E machine.

The scheduled call instruction cal(se)(f)(si) schedules the computation of f whose execution
strictly takes time. se is the address of a signal port in the environment interface. si is the address of
a signal port in the internal memory. We require for the execution of the instruction that the stack
contains at least one value n > 0. The computation of f may finish non-deterministically before or
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Function f: red(fr)
psh(20)
cal(clk)(f)
emp(clk)(Write:)
pop
ret

Write: wrt(fw)
ret

Function g: psh(5)
cal(clk)(g)
pop
ret

Figure 8: An example of E code with scheduled computation.

at the m-th occurrence of a signal in se where m = µ(se)+n. Note that whenever the computation
of f finishes after the m-th occurrence its result will be discarded by the E machine. We require
that f reads its input values upon execution of the scheduled call instruction. The result of the
computation is written to the machine memory when the computation of f is finished on time. Then
also the signal counter in si is increased by one, effectively emitting a signal in the internal memory
at the completion of the computation of f . Technically, the instruction cal(se)(f)(si) inserts a
scheduled reaction (se, µ(se)+ i, f, µ|in, {si}) for some i with 0 < i ≤ n into the distributed reaction
of the E machine. The scheduled reaction will become effective when the signal counter of se reaches
µ(se) + i. Note that, in general, the scheduled call instruction leads to non-deterministic runs of
the E machine because any choice of i with 0 < i ≤ n is valid.

As opposed to synchronous reactive languages only scheduled computation in the E machine is
allowed to emit signals. Note that the instruction cal(se)(f) is a special case in which no signal
counter is increased. The non-determinism of the duration of scheduled computation has to be
resolved by an arbitrary scheduling algorithm which is a parameter of the E machine. Scheduled
computation which does not finish before its scheduled reaction has to be discarded by a valid
implementation of the E machine.

Definition 4.17 (Scheduled Computation)
Let se be the address of an environment signal port and let si be the address of an internal signal
port. Let f be a computable function which maps valuations of a subset in of the internal ports int
to valuations of a subset of the internal value ports intv. Let n be a non-negative integer. We define
the semantics of the instruction cal(se)(f)(si) and cal(se)(f). If ∗(PC, eco) = cal(se)(f)(si) then
let S = {si}, or else if ∗(PC, eco) = cal(se)(f) then let S = ∅. Then:

exec(PC, 〈n〉 ◦ stk, (µ, τ, δ, ρ)) = Ccpl ∪ exec(PC + 1, 〈n〉 ◦ stk, (µ, τ, δ, ρ))

with Ccpl =
⋃

0<i≤n exec(PC + 1, 〈n〉 ◦ stk, (µ, τ, δ ∪ {(se, µ(se) + i, f, µ|in, S)}, ρ)).
Consider the scheduled E code in Figure 8. This example replaces the code labelled Function f:

and Function g: depicted by Figure 5 and Figure 6, respectively. Now, the computation of g may
take up to 5ms whereas the computation of f may take up to 20ms. Note that the write instruction
subsequent to the computation of f has to be delayed until the computation of f is completed. The
semantics of the E machine guarantees that the result of the computation of f is available before
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Function f: red(fr)
psh(20)
cal(clk)(f)(fin)
pop
psh(1)
emp(fin)(Write:)
pop
ret

Figure 9: An example of E code with scheduled computation.

or at the next 20ms instance and strictly before any other synchronous E code scheduled to begin
at the next 20ms instance is invoked.

Another way to replace the code labelled Function f: depicted by Figure 8 is shown in Figure 9.
Now, we use an additional internal signal port with address fin whose signal counter is increased
by one as soon as the computation of f finishes. This implies that the write instruction may be
performed earlier than within the next 20ms.

The termination instruction complements the scheduled call instruction in the sense that a
scheduled reaction which has previously been inserted into the distributed reaction δ by a sched-
uled call instruction can be removed by the termination instruction. Termination corresponds to
terminating scheduled computation and communication within a given interval of signal counters.

Definition 4.18 (Termination)
Let se be the address of an environment signal port and let S either be the empty set or a singleton
set {si} where si is the address of a signal port. Let f be a function and let ν be a valuation. We
define the semantics of the instruction trm(se)(f). Let n be a non-negative integer. We assume
that ∗(PC, eco) = trm(se)(f). Then:

exec(PC, 〈n〉 ◦ stk, (µ, τ, δ, ρ)) = exec(PC + 1, 〈n〉 ◦ stk, (µ, τ, δ \ δtrm, ρ))

with δtrm = {d|d = (se, µ(se) + i, f, ν, S) ∈ δ, 0 < i ≤ n}.

Scheduled Communication. Similar to scheduled computation, we introduce instructions for
scheduled communication which strictly takes time as opposed to synchronous communication. Note
that the termination instruction may also be used to terminate scheduled communication. We define
a polling instruction pol(se)(f)(si) and a send instruction snd(se)(f)(si) for scheduled communi-
cation which complement the synchronous read instruction red(f) and write instruction wrt(f),
respectively. We assume that the worst-case latency of f is known and available to any scheduling
algorithm used by the E machine.

Definition 4.19 (Poll)
Let se be an environment signal port and let si be an internal signal port. Let f be a computable
function which maps valuations of a subset in of the environment and output ports env∪out to val-
uations of a subset of the internal value ports intv. The semantics of the instruction pol(se)(f)(si)
and pol(se)(f) is the same as the semantics of the instruction cal(se)(f)(si) and cal(se)(f), re-
spectively.
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Function f: red(fr)
psh(15)
cal(clk)(f)
emp(clk)(Write:)
pop
ret

Write: psh(5)
snd(clk)(fw)
pop
ret

Figure 10: An example of E code with scheduled computation and communication.

Definition 4.20 (Send)
Let se be an environment signal port and let so be an output signal port. Let f be a computable
function which maps valuations of a subset in of the internal ports int to valuations of a subset of
the output value ports outv. The semantics of the instruction snd(se)(f)(so) and snd(se)(f) is the
same as the semantics of the instruction cal(se)(f)(so) and cal(se)(f), respectively.

Figure 10 shows scheduled E code which replaces the code labelled Function f: depicted by
Figure 8 and Figure 9. Now, we shorten the deadline of the computation of f to 15ms and send, at
the next 15ms instance its result to some output port within the next 5ms. The send instruction
may also be triggered by an additional signal port similar as the example of Figure 9.

4.2 The E Machine Semantics

We define the formal semantics of the E machine in terms of sequences of configurations. We dis-
tinguish the deterministic dispatcher and the non-deterministic scheduler of the E machine. The
scheduler is non-deterministic in the sense that it does not specify the completion times of sched-
uled computation and communication which effectively makes it compatible with any scheduling
algorithm. In order to compute a new configuration, the scheduler first calls the dispatcher to up-
date the memory according to all computations and communication which have been scheduled to
finish now. Note that in an implementation of the E machine the dispatcher is usually not called by
the scheduler but upon completion of scheduled computation and communication by the completed
tasks and messages themselves. Based on the updated memory µdsp and the current set σact of
signal counters the scheduler executes embedded jumps which were waiting for σact resulting in
new embedded jumps in the future and possibly new scheduled computation and communication.

Given a set σ of signal counters from the environment interface, the dispatcher collects the results
of all completed scheduled reactions which have been scheduled to finish at σ. The dispatcher
updates value ports and may increase the signal counters of signal ports. Recall that, e.g., the
scheduled call instruction cal(se)(f)(si) modifies, upon completion, the valuation of value ports
to which f writes and also increases the signal counter of si. In general, there might be multiple
completed scheduled reactions at the same instance which, however, in practice are only possible
on different E machines of a distributed E machine.

Definition 4.21 (Dispatcher)
Let M be an embedded machine (eco, env, int, out). The dispatcher of M is a function dispatch
which maps a set σ of signal counters, a valuation µ for the overall memory mem of M , and a
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distributed reaction δ of M to a valuation µ′ for mem as follows:

1. We assume that the set σ contains signal counters of all environment signal ports which just
have been increased by one indicating the occurrence of a signal. We compute the set δcpl

of completed scheduled reactions from the distributed reaction δ: δcpl = {d|(s, n) ∈ σ, d =
(s, n, f, ν, S) ∈ δ}.

2. In Scpl we collect all signal ports from the completed scheduled reactions δcpl whose counters
will be increased by one: Scpl = {st|(s, n, f, ν, S) ∈ δcpl, st ∈ S}.

3. We compute inductively the updated valuation of the E machine memory by first initializing:
δ0 = δcpl and µ0 = µ.

4. For all i ≥ 0 for which there is, non-deterministically, a completed scheduled reaction d =
(s, n, f, ν, S) ∈ δi, let us remove d in δi+1 = δi \ {d} and update µi+1 = update(µi, f(ν)) by
the valuation f(ν) computed by the function f on the valuation ν for the input ports of f .

5. Finally, we increase the signal counters of Scpl by one and return the last valuation µ′ with:
µ′ = increase(µk, S

cpl) and k = min({i|i ≥ 0, δi = ∅}).
The scheduler of the E machine computes for a given configuration a set of new configura-

tions which contains all possible schedules. Whenever an implementation of the E machine uses a
scheduling algorithm which is deterministic with respect to occurrences of signals, i.e., the progress
of time and the occurrences of events, the scheduler will become deterministic up to changes at the
environment interface.

The scheduler first calls the dispatcher to collect the results of the completed scheduled reactions.
Then it determines the set τact

0 of active triggers in the schedule τ . A trigger (s, n, l) is active if
the signal counter of s reached n. The scheduler executes the E code at the program address l.
Multiple active triggers are executed in the order of the previous execution of the embedded jumps
which created the triggers.

Definition 4.22 (Scheduler)
Let M be an embedded machine (eco, env, int, out). Let c and c′ be two configurations of M of
the form (µ, τ, δ, ρ) and (µ′, τ ′, δ′, ρ′), respectively. The scheduler scd of M is a relation on pairs of
configurations with (c, c′) ∈ scd if and only if:

1. In order to compute the completed scheduled reactions first, we begin with collecting all signal
ports of the environment interface whose signal counters have been increased from c to c′:
σcpl = µ′|envs \ µ|envs . Recall that reactions of scheduled computation and communication
may only be scheduled with respect to signal ports of the environment interface.

2. We compute the results of the completed scheduled reactions based on the new valuations
of the environment interface and use the last valuations of the internal memory and output
interface: µcpl = µ′|env ∪ µ|int∪out.

3. µdsp = dispatch(σcpl, µcpl, δ) incorporates the results of all completed scheduled reactions
written to µcpl by the dispatcher.

4. Sact = envs ∪ ints ∪ outs is the set of all signal ports of M which may now activate triggers.

5. We will compute all active triggers based on the set σact = µdsp|Sact \µ|Sact of the signal ports
whose signal counters have been increased from c to c′ at the environment interface as well
as in the internal memory and at the output interface.
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6. In τact
0 = τ \ {t|t = (s, n, l) ∈ τ, (s, n) /∈ σact} we collect all active triggers of the current

schedule τ .

7. We compute inductively the updated versions of the valuation, the schedule, the distributed
reaction, and the control state of the E machine by first initializing: µ0 = µdsp, τ0 = τ , δ0 = δ,
and ρ0 = ρ.

8. For all i ≥ 0 for which there is an active trigger t of the form (s, n, l) such that τact
i =

〈t〉 ◦ τact
i+1, we update µi+1 = update(µi, µt), τi+1 = τt, δi+1 = δt, and ρi+1 = update(ρi, ρt)

according to the execution of the E code at the program address l with (µt, τt, δt, ρt) ∈
exec(l, 〈〉, (µi, τi, δi, ρi)). Note that τi+1 and δi+1 are replaced by τt and δt, respectively,
rather than being extended. This allows triggers and scheduled reactions not only to be
added but also to be removed from the schedules. In particular, removing a scheduled reaction
corresponds to terminating scheduled computation or communication.

9. Finally, a new configuration c′ consists of µ′ = µk, τ ′ = τk, δ′ = δk, and ρ′ = ρk with
k = min({i|i ≥ 0, τact

i = 〈〉}).
We define the semantics of the embedded machine in terms of sequences of configurations.

Stuttering with respect to signals at the environment interface occurs whenever there is no active
trigger and no completed scheduled reaction.

Definition 4.23 (Run)
Let scd be the scheduler of an embedded machine M . Let C be a set of initial configurations of M .
A run of M is a sequence c0, c1, c2, . . . with c0 ∈ C and scd(ci, ci+1) for all i ≥ 0.

5 The Distributed Embedded Machine

We define the parallel composition of multiple E machines where some output ports of one machine
may be equal to some output ports of another machine. Simultaneous write access by multiple
machines is scheduled non-deterministically by the E machine which effectively makes the machine
compatible with any write access protocol. The ports of the environment interface, on the other
hand, are required to be controlled exclusively by the physical environment rather than other
E machines.

We formally define the parallel composition of E machines. The result of the parallel composition
of E machines is the distributed embedded machine. Most importantly, the semantics of the non-
distributed E machine carries over to the distributed E machine without further enhancements.

Definition 5.1 (Machine Composition)
Let M1 be a (distributed) embedded machine (eco1, env1, int1, out1) and let M2 be a (distributed)
embedded machine (eco2, env2, int2, out2) such that either the end of eco1 is strictly smaller than
the offset of eco2 or the end of eco2 is strictly smaller than the offset of eco1, env1 ∩ out2 = ∅,
env2 ∩ out1 = ∅, int1 ∩ (env2 ∪ int2 ∪ out2) = ∅, and int2 ∩ (env1 ∪ int1 ∪ out1) = ∅. The
composition M1‖M2 of M1 and M2 is a tuple (eco, env, int, out) with:

eco = eco1 ◦ eco2

env = env1 ∪ env2
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int = int1 ∪ int2

out = out1 ∪ out2

Note that ‖ is associative and commutative up to the order of the E code of the composed
machines which does not have any effects on the semantics of the composition.

Definition 5.2 (Distributed Embedded Machine)
A distributed embedded machine is the composition of (distributed) embedded machines.

6 Conclusion

We conclude with a discussion of particularly interesting platforms on which the embedded machine
may be implemented. The time-triggered machine is a special case of the embedded machine in
which we allow only a single signal port clk in the environment interface. We assume that a real-
time clock increases periodically the signal counter of clk. Thus the physical environment can
only trigger computational activity in the time-triggered machine through the signal port clk. In
particular, events in the physical environment can only be observed in a time-triggered fashion by
keeping track of the valuations of the value ports in the environment interface.

Definition 6.1 (Time-Triggered Machine)
The (distributed) time-triggered machine (TT Machine) is a (distributed) embedded machine with
an environment interface which contains only a single signal port clk. We assume that a real-
time clock increases periodically the signal counter of clk. We require that there are no shared
output signal ports in the output interface among any of its component machines. We may call an
embedded jump emp(clk)(l) of the TT machine a temporal jump denoted by tmp(l).

The time-triggered architecture (TTA) [Kop97] is an interesting platform to implement the dis-
tributed time-triggered machine. A TTA requires implicit clock synchronization which allows TTA
applications to exploit the existence of a global clock. It is thus not necessary for a TTA application
to use signals across machines to control computation and communication. Note, however, that
a TTA on the lowest operational level of the time-triggered protocol (TTP) uses signals across
machines because this is an inherent part of networking in general. It is also possible to model the
operational level, in particular, of the TTP controllers by a more complex distributed embedded
machine with a single signal port clk in the environment interface but with shared output signal
ports in the output interfaces of its component machines.

Another interesting platform for the distributed embedded machine is the globally asynchronous
locally synchronous (GALS) architecture [BCG00] in which implicit global synchronization is re-
placed by explicit and directed clock synchronization. A receiver synchronizes its clock with the
clock of a sender only upon the arrival of a new message from the sender. All local clocks in a
GALS architecture will effectively be synchronized if all nodes in the system are senders and re-
ceivers which engage in a periodic exchange of messages. The explicit and directed synchronization
can be modeled with E machine signals crossing the networks of a GALS architecture.

Future work with the E machine includes the design of a compiler which generates E code
for the time-triggered programming language Giotto [HHK00]. The compiler may be part of the
software architecture Ptolemy II [DGH+99] in which we have implemented Giotto as a model of
computation. More complex code generation may result from combinations of Giotto with other
models of computation in Ptolemy II like, e.g., the finite state machine and the synchronous data
flow models.
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7 Appendix: Opcodes

Instruction Opcode Instruction Opcode
nop 0 set 10
emp 1 ret 11
des 2 cal 12
com 3 pol 13
red 4 snd 14
wrt 5 trm 15
prd 6 psh 16
cmp 7 pop 17
jmp 8 add 18
imp 9 neq 19
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